Deconvolution Signal Models

- Simple or Fixed-shape regression (previous talks):
 - ★ We fixed the shape of the HRF amplitude varies
 - ★ Used -stim_times to generate the signal model (AKA the "ideal") from the stimulus timing
 - * Found the amplitude of the signal model in each voxel solution to the set of linear equations = β weights
- Deconvolution or Variable-shape regression (now):
 - ★ We allow the shape of the HRF to vary in each voxel, for each stimulus class
 - ★ Appropriate when you don't want to overconstrain the solution by assuming an HRF shape
 - **★ Caveat**: need to have enough time points during the HRF in order to resolve its shape (e.g., TR ≤ 3 s)

Deconvolution: Pros & Cons (+ & -)

- + Letting HRF shape varies allows for subject and regional variability in hemodynamics
- + Can test HRF estimate for different shapes (e.g., are later time points more "active" than earlier?)
- Need to estimate more parameters for each stimulus class than a fixed-shape model (e.g., 4-15 vs. 1 parameter=amplitude of HRF)
- Which means you need more data to get the same statistical power (assuming that the fixed-shape model you would otherwise use was in fact "correct")
- Freedom to get any shape in HRF results can give weird shapes that are difficult to interpret

Expressing HRF via Regression Unknowns

 The tool for expressing an unknown function as a finite set of numbers that can be fit via linear regression is an <u>expansion in basis functions</u>

$$h(t) = \beta_0 \psi_0(t) + \beta_1 \psi_1(t) + \beta_2 \psi_2(t) + \dots = \sum_{q=0}^{q=p} \beta_q \psi_q(t)$$

- * The basis functions $\psi_q(t)$ & expansion order p are known o Larger $p \Rightarrow$ more complex shapes & more parameters
- * The unknowns to be found (in each voxel) comprises the set of weights β_q for each $\psi_q(t)$
- \$\beta\$ weights appear only by multiplying known values, and HRF only appears in signal model by linear convolution (addition) with known stimulus timing
 - Resulting signal model still solvable by linear regression

3dDeconvolve with "Tent Functions"

- Need to describe HRF shape and magnitude with a finite number of parameters
 - * And allow for calculation of h(t) at any arbitrary point in time after the stimulus times:

$$r_n = \sum_{k=1}^{K} h(t_n - \tau_k) = \text{sum of HRF copies}$$

- Simplest set of such functions are <u>tent functions</u>
 - ★ Also known as "piecewise linear splines"

Tent Functions = Linear Interpolation

 Expansion of HRF in a set of spaced-apart tent functions is the same as linear interpolation between "knots"

- Tent function parameters are also easily interpreted as function values (e.g., β_2 = response at time $t = 2 \cdot L$ after stim)
- User must decide on relationship of tent function grid spacing
 L and time grid spacing TR (usually would choose L ≥ TR)
- In 3dDeconvolve: specify duration of HRF and number of β parameters (details shown a few slides ahead)

<u>Tent Functions = Linear Interpolation</u>

 Expansion of HRF in a set of spaced-apart tent functions is the same as linear interpolation between "knots"

$$h(t) = \beta_0 \cdot T\left(\frac{t}{L}\right) + \beta_1 \cdot T\left(\frac{t-L}{L}\right) + \beta_2 \cdot T\left(\frac{t-2 \cdot L}{L}\right) + \beta_3 \cdot T\left(\frac{t-3 \cdot L}{L}\right) + \cdots$$

- Tent function parameters are also easily interpreted as function values (e.g., β_2 = response at time $t = 2 \cdot L$ after stim)
- User must decide on relationship of tent function grid spacing
 L and time grid spacing TR (usually would choose L ≥ TR)
- In 3dDeconvolve: specify duration of HRF and number of β parameters (details shown a few slides ahead)

<u>Tent Functions = Linear Interpolation</u>

 Expansion of HRF in a set of spaced-apart tent functions is the same as linear interpolation between "knots"

$$h(t) = \beta_0 \cdot T\left(\frac{t}{L}\right) + \beta_1 \cdot T\left(\frac{t-L}{L}\right) + \beta_2 \cdot T\left(\frac{t-2 \cdot L}{L}\right) + \beta_3 \cdot T\left(\frac{t-3 \cdot L}{L}\right) + \cdots$$

- Tent function parameters are also easily interpreted as function values (e.g., β_2 = response at time $t = 2 \cdot L$ after stim)
- User must decide on relationship of tent function grid spacing
 L and time grid spacing TR (usually would choose L ≥ TR)
- In 3dDeconvolve: specify duration of HRF and number of β parameters (details shown a few slides ahead)

Tent Functions: Average Signal Change

- For input to group analysis, usually want to compute average signal change
 - ★ Over entire duration of HRF (usual)
 - ★ Over a sub-interval of the HRF duration (sometimes)
- In previous slide, with 6 β weights, average signal change is

$$\frac{1}{2}\beta_0 + \beta_1 + \beta_2 + \beta_3 + \beta_4 + \frac{1}{2}\beta_5$$

- First and last β weights are scaled by half since they only affect half as much of the duration of the response
- In practice, may want to use $0 \cdot \beta_0$ since immediate poststimulus response is not neuro-hemodynamically relevant
- All β weights (for each stimulus class) are output into the "bucket" dataset produced by 3dDeconvolve
- Can then be combined into a single number using 3dcalc

Deconvolution and Collinearity

Regular stimulus timing can lead to collinearity!

Tail of HRF from #1 overlaps head of HRF from #2, etc

<u>Deconvolution and Collinearity</u>

<u>Deconvolution and Collinearity</u>

<u>Deconvolution and Collinearity</u>

<u>Deconvolution and Collinearity</u>

<u>Deconvolution and Collinearity</u>

Deconvolution and Collinearity

<u>Deconvolution Example - The Data</u>

- cd AFNI data2
 - ★ data is in ED/ subdirectory (10 runs of 136 images each; TR=2 s)
 - * SCript = s1.afni_proc_command (in AFNI_data2/ directory)
 - o stimuli timing and GLT contrast files in misc_files/
 - * this script runs program afni_proc.py to generate a shell script with all AFNI commands for single-subject analysis
 - Run by typing tcsh s1.afni_proc_command; then copy/paste
 tcsh -x proc.ED.8.glt | & tee output.proc.ED.8.glt
- Event-related study from Mike Beauchamp
 - ★ 10 runs with four classes of stimuli (short videos)
 - Tools moving (e.g., a hammer pounding) <u>ToolMovie</u>
 - People moving (e.g., jumping jacks) <u>HumanMovie</u>
 - Points outlining tools moving (no objects, just points) <u>ToolPoint</u>
 - Points outlining people moving <u>HumanPoint</u>
 - ★ Goal: find brain area that distinguishes natural motions (HumanMovie and HumanPoint) from simpler rigid motions (ToolMovie and ToolPoint)

Text output from programs goes to screen and file

Master Script for Data Analysis

```
√ Master script program

afni proc.py
 -dsets ED/ED r??+orig.HEAD

√ 10 input datasets

 -subj id ED.8.glt

✓ Set output filenames 
✓
                                                       \ Copy anat to output dir
 -copy anat ED/EDspgr
 -tcat remove first trs 2
                                                       \ Discard first 2 TRs
                                                       \ Where to align all EPIs
 -volreg align to first
                                                       \ Stimulus timing files (4)
 -regress stim times misc files/stim times.*.1D
                                                       \ ✓ Stimulus labels
 -regress stim labels ToolMovie HumanMovie
                       ToolPoint HumanPoint
 -regress basis 'TENT(0,14,8)'
                                                       \ ← HRF model
 -regress opts 3dD
                                                       lines are options to be
 -qltsym ../misc files/qlt1.txt -qlt label 1 FullF
                                                           passed to
 -qltsym ../misc files/qlt2.txt -qlt label 2 HvsT
                                                           3dDeconvolve
 -gltsym ../misc files/glt3.txt -glt label 3 MvsP
                                                           directly (in this case,
 -gltsym ../misc files/glt4.txt -glt label 4 HMvsHP
                                                           the GLTs we want
                                                           computed)
 -gltsym ../misc files/glt5.txt -glt label 5 TMvsTP \
 -qltsym ../misc files/qlt6.txt -qlt label 6 HPvsTP
 -gltsym ../misc files/glt7.txt -glt label 7 HMvsTM
```

This script generates file proc.ED.8.glt (180 lines), which contains all the AFNI commands to produce analysis results into directory ED.8.glt.results/ (148 files)

Shell Script for Deconvolution - Outline

- Copy datasets into output directory for processing
- Examine each imaging run for outliers: 3dToutcount
- Time shift each run's slices to a common origin: 3dTshift
- Registration of each imaging run: 3dvolreg
- Smooth each volume in space (136 sub-bricks per run): 3dmerge
- Create a brain mask: 3dAutomask and 3dcalc
- Rescale each voxel time series in each imaging run so that its average through time is 100: 3dTstat and 3dcalc
 - \star If baseline is 100, then a β_q of 5 (say) indicates a 5% signal change in that voxel at tent function knot #q after stimulus
 - * Biophysics: believe % signal change is relevant physiological parameter
- Catenate all imaging runs together into one big dataset (1360 time points): 3dTcat
 - ★ This dataset is useful for plotting -fitts output from 3dDeconvolve and visually examining time series fitting
- Compute HRFs and statistics: 3dDeconvolve

Script - 3dToutcount

```
# set list of runs
set runs = (`count -digits 2 1 10`)
# run 3dToutcount for each run
foreach run ( $runs )
  3dToutcount -automask pb00.$subj.r$run.tcat+orig > outcount r$run.1D
end
             20.
                 30.
        10.
```

Via 1dplot outcount_r??.1D
3dToutcount searches for "outliers" in data time series;
You should examine noticeable runs & time points

Script - 3dTshift

- Produces new datasets where each time series has been shifted to have the same time origin
- -tzero 0 means that all data time series are interpolated to match the time offset of the first slice
 - Which is what the slice timing files usually refer to
 - Quintic (5th order) polynomial interpolation is used
- 3dDeconvolve will be run on these time-shifted datasets
 - This is mostly important for Event-Related FMRI studies, where the response to the stimulus is briefer than for Block designs
 - (Because the stimulus is briefer)
 - Being a little off in the stimulus timing in a Block design is not likely to matter much

Script - 3dvolreg

```
# align each dset to the base volume
foreach run ( $runs )
   3dvolreg -verbose -zpad 1 -base pb01.$subj.r01.tshift+orig'[0]' \
        -1Dfile dfile.r$run.1D -prefix pb02.$subj.r$run.volreg \
        pb01.$subj.r$run.tshift+orig
```

end

- Produces new datasets where each volume (one time point) has been aligned (registered) to the #0 time point in the #1 dataset
- Movement parameters are saved into files dfile.r\$run.1D
 - Will be used as extra regressors in 3dDeconvolve to reduce motion artifacts

1dplot -volreg dfile.rall.1D

- Shows movement parameters for all runs (1360 time points) in degrees and millimeters
- Very important to look at this graph!
- Excessive movement can make an imaging run useless — 3dvolreg won't be able to compensate
 - Pay attention to scale of movements: more than about 2 voxel sizes in a short time interval is usually bad

Script - 3dmerge

```
# blur each volume
foreach run ( $runs )
    3dmerge -1blur fwhm 4 -doall -prefix pb03.$subj.r$run.blur
            pb02.$subj.r$run.volreg+orig
end
```

• Why Blur? Reduce noise by averaging neighboring voxels time series

- Yellow curve = Model fit ($R^2 = 0.50$)
- <u>Green</u> curve = Stimulus timing

This is an extremely good fit for ER FMRI data!

Why Blur? - 2

- fMRI activations are (usually)
 blob-ish (several voxels across)
- Averaging neighbors will also reduce the fiendish multiple comparisons problem

- ★ Number of independent "resels" will be smaller than number of voxels (e.g., 2000 vs. 20000)
- Why not just acquire at lower resolution?
 - ★ To avoid averaging across brain/non-brain interfaces
 - ★ To project onto surface models
- Amount to blur is specified as FWHM (Full Width at Half Maximum) of spatial averaging filter (4 mm in script)

Script - 3dAutomask

```
# create 'full_mask' dataset (union mask)
foreach run ( $runs )
   3dAutomask -dilate 1 -prefix rm.mask_r$run pb03.$subj.r$run.blur+orig
end
# get mean and compare it to 0 for taking 'union'
3dMean -datum short -prefix rm.mean rm.mask*.HEAD
3dcalc -a rm.mean+orig -expr 'ispositive(a-0)' -prefix full mask.$subj
```

- 3dAutomask creates a mask of contiguous high-intensity voxels (with some hole-filling) from each imaging run separately
- 3dMean and 3dcalc are used to create a mask that is the <u>union</u> of all the individual run masks
- 3dDeconvolve analysis will be limited to voxels in this mask
 - Will run faster, since less data to process

Automask from EPI shown in red

Script - Scaling

end

- 3dTstat calculates the mean (through time) of each voxel's time series data
- For voxels in the mask, each data point is scaled (multiplied) using 3dcalc so that it's time series will have mean = 100
- If an HRF regressor has max amplitude = 1, then its β coefficient will represent the percent signal change (from the mean) due to that part of the signal model
- Scaled images are very boring to view
 - No spatial contrast by design!
 - Graphs have common baseline now —

Script - 3dDeconvolve

```
3dDeconvolve -input pb04.$subj.r??.scale+orig.HEAD -polort 2
 -mask full mask.$subj+orig -basis normall 1 -num stimts 10
 -stim times 1 stimuli/stim times.01.1D 'TENT(0,14,8)'
 -stim label 1 ToolMovie
 -stim times 2 stimuli/stim times.02.1D 'TENT(0,14,8)'
 -stim label 2 HumanMovie
                                                                       4 stim types
 -stim times 3 stimuli/stim times.03.1D 'TENT(0,14,8)'
 -stim label 3 ToolPoint
 -stim times 4 stimuli/stim times.04.1D 'TENT(0,14,8)'
 -stim label 4 HumanPoint
 -stim file 5 dfile.rall.1D'[0]' -stim base 5 -stim label 5 roll
 -stim file 6 dfile.rall.1D'[1]' -stim base 6 -stim label 6 pitch \
 -stim file 7 dfile.rall.1D'[2]' -stim base 7 -stim label 7 yaw
                                                                       motion params
 -stim file 8 dfile.rall.1D'[3]' -stim base 8 -stim label 8 dS
 -stim file 9 dfile.rall.1D'[4]' -stim base 9 -stim label 9 dL
 -stim file 10 dfile.rall.1D'[5]' -stim base 10 -stim label 10 dP
 -iresp 1 iresp ToolMovie.$subj -iresp 2 iresp HumanMovie.$subj
                                                                       HRF outputs
 -iresp 3 iresp ToolPoint.$subj -iresp 4 iresp HumanPoint.$subj
 -gltsym ../misc files/glt1.txt -glt label 1 FullF
 -qltsym ../misc files/qlt2.txt -qlt label 2 HvsT
 -qltsym ../misc files/qlt3.txt -qlt label 3 MvsP
                                                                       GLTs
 -qltsym ../misc files/qlt4.txt -qlt label 4 HMvsHP
 -qltsym ../misc files/qlt5.txt -qlt label 5 TMvsTP
 -qltsym ../misc files/qlt6.txt -qlt label 6 HPvsTP
 -qltsym ../misc files/qlt7.txt -qlt label 7 HMvsTM
 -fout -tout -full first -x1D Xmat.x1D -fitts fitts.$subj -bucket stats.$subj
```

Results: Humans vs. Tools

- Color overlay: HvsT GLT contrast
- Blue (upper) graphs: Human HRFs
- Red (lower) graphs: Tool HRFs

Script - X Matrix

Via 1grayplot -sep Xmat.x1D

Script - Random Comments

- •-polort 2
 - ★Sets baseline (detrending) to use quadratic polynomials—in each run
- -mask full mask.\$subj+orig
 - ★Process only the voxels that are nonzero in this mask dataset
- -basis normall 1
 - ★Make sure that the basis functions used in the HRF expansion all have maximum magnitude=1
- -stim_times 1 stimuli/stim_times.01.1D
 'TENT(0,14,8)'
 - -stim_label 1 ToolMovie
 - ★The HRF model for the ToolMovie stimuli starts at 0 s after each stimulus, lasts for 14 s, and has 8 basis tent functions
 - o Which have knots (breakpoints) spaced 14/(8-1)=2 s apart
- •-iresp 1 iresp_ToolMovie.\$subj
 - ★The HRF model for the ToolMovie stimuli is output into dataset iresp_ToolMovie.ED.8.glt+orig

Script - GLTs

- -gltsym ../misc_files/glt2.txt -glt_label 2 HvsT
 * File ../misc files/glt2.txt contains 1 line of text:
 - o -ToolMovie +HumanMovie -ToolPoint +HumanPoint
 - This is the "Humans vs. Tools" HvsT contrast shown on Results slide
- This GLT means to take all 8 β coefficients for each stimulus class and combine them with additions and subtractions as ordered:

$$LC = -\beta_0^{TM} - \dots - \beta_7^{TM} + \beta_0^{HM} + \dots + \beta_7^{HM} - \beta_0^{TP} - \dots - \beta_7^{TP} + \beta_0^{HP} + \dots + \beta_7^{HP}$$

- This test is looking at the integrated (summed) response to the "Human" stimuli and subtracting it from the integrated response to the "Tool" stimuli
- Combining subsets of the
 ^B weights is also possible with -gltsym:
 - +HumanMovie[2...6] -HumanPoint[2...6]
 - This GLT would add up just the #2,3,4,5, & 6 β weights for one type of stimulus and subtract the sum of the #2,3,4,5, & 6 β weights for another type of stimulus
 - And also produce F- and t-statistics for this linear combination

Script - Multi-Row GLTs

GLTs presented up to now have had one row

-glt label 1 FullF

- ★ Testing if some linear combination of β weights is nonzero; test statistic is t or F ($F=t^2$ when testing a single number)
- ★ Testing if the X matrix columns, when added together to form one column as specified by the GLT (+ and -), explain a significant fraction of the data time series (equivalent to above)
- Can also do a single test to see if several different combinations of β weights are all zero
 -gltsym .../misc files/glt1.txt
 - ★ Tests if *any* of the stimulus classes have nonzero integrated HRF (each name means "add up those β weights") : DOF = (4,1292)

+HumanPoint

★ Different than the default "Full F-stat" produced by 3dDeconvolve, which tests if any of the *individual* β weights are nonzero: DOF = (32,1292)

Two Possible Formats for -stim times

19.4

- If you don't use -local_times or -global_times, 3dDeconvolve will *guess* which way to interpret numbers:
- A single column of numbers (GLOBAL times) ←
 - ⋆ One stimulus time per row
 - \star Times are relative to first image in dataset being at t=0
 - ★ May not be simplest to use if multiple runs are catenated
- One row for each run within a catenated dataset (LOCAL times)
 - * Each time in j^{th} row is relative to start of run #j being t=0
 - ★ If some run has NO stimuli in the given class, just put a single "*" in that row as a filler
 4.7 9.6 11.8 19.4
 - Different numbers of stimuli per run are OK
 - At least one row must have more than 1 time
 (so that the LOCAL type of timing file can be told from the GLOBAL)
- Two methods are available because of users' diverse needs
 - ★ N.B.: if you chop first few images off the start of each run, the inputs to -stim_times must be adjusted accordingly!
 - o Better to use -CENSORTR to tell 3dDeconvolve just to ignore those points

More information about -stim_times and its variants is in the afni07 advanced talk